Lattices of Quasi-Equational Theories as Congruence Lattices of Semilattices with Operators: Part II

نویسندگان

  • Kira V. Adaricheva
  • James B. Nation
چکیده

Part I proved that for every quasivariety K of structures (which may have both operations and relations) there is a semilattice S with operators such that the lattice of quasiequational theories of K (the dual of the lattice of sub-quasivarieties of K) is isomorphic to Con(S,+, 0,F). It is known that if S is a join semilattice with 0 (and no operators), then there is a quasivariety Q such that the lattice of theories of Q is isomorphic to Con(S,+, 0). We prove that if S is a semilattice having both 0 and 1 with a group G of operators acting on S, and each operator in G fixes both 0 and 1, then there is a quasivariety W such that the lattice of theories of W is isomorphic to Con(S,+, 0,G).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattices of Quasi-Equational Theories as Congruence Lattices of Semilattices with Operators: Part I

We show that for every quasivariety K of relational structures there is a semilattice S with operators such that the lattice of quasiequational theories of K (the dual of the lattice of sub-quasivarieties of K) is isomorphic to Con(S,+, 0, F). As a consequence, new restrictions on the natural quasi-interior operator on lattices of quasi-equational theories are found. 1. Motivation and terminolo...

متن کامل

Lattices of Theories in Languages without Equality

If S is a semilattice with operators, then there is an implicational theory Q such that the congruence lattice Con(S) is isomorphic to the lattice of all implicational theories containing Q. The author and Kira Adaricheva have shown that lattices of quasi-equational theories are isomorphic to congruence lattices of semilattices with operators [1]. That is, given a quasi-equational theory Q, the...

متن کامل

Lattices of Quasi-equational Theories as Congruence Lattices of Semilattices with Operators

We show that for every quasivariety K of relational structures there is a semilattice S with operators such that the lattice of quasiequational theories of K (the dual of the lattice of sub-quasivarieties of K) is isomorphic to Con(S,+, 0, F). It is known that if S is a join semilattice with 0, then there is a quasivariety Q such that the lattice of theories of Q is isomorphic to Con(S,+, 0) (w...

متن کامل

The Structure of Pseudocomplemented Distributive Lattices. Ii: Congruence Extension and Amalgamation

This paper continues the examination of the structure of pseudocomplemented distributive lattices. First, the Congruence Extension Property is proved. This is then applied to examine properties of the equational classes ¿Sn, — lá«So), which is a complete list of all the equational classes of pseudocomplemented distributive lattices (see Part I). The standard semigroups (i.e., the semigroup gene...

متن کامل

Congruence Lattices of Semilattices

The main result of this paper is that the class of congruence lattices of semilattices satisfies no nontrivial lattice identities. It is also shown that the class of subalgebra lattices of semilattices satisfies no nontrivial lattice identities. As a consequence it is shown that if 5^* is a semigroup variety all of whose congruence lattices satisfy some fixed nontrivial lattice identity, then a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJAC

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012